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Abstract

We present a minimal model for analyzing Oral Glucose Tolerance
Test (OGTT) data base on system of 5 ODEs. The model has 4
unknown parameters which are inferred using a Bayesian approach.
Preliminarily results are shown with three real patient data.

1 Introduction

For diagnosis of diabetes, metabolic syndrome and other conditions an Oral
Glucose Tolerance Test (OGTT) is performed. After a night’s sleep, fasting
patients have their blood glucose measured and are asked to drink a 75 g
sugar concentrate. Blood glucose is then measured at the hour, two hours
and sometimes at three hours, depending on local practices.

A diagnosis tool is needed since there are many scenarios in which blood
glucose ranges from low to high to intermediate levels in different patterns
and MD’s resort only to simple guidelines for diagnosis.

∗(corresponding author) Email: jac@cimat.mx .
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Table 1: Minimal model for analysis of OGTT state variables, parame-
ter definition and units. Time is measured in hours (hr) and therefore all
derivatives have corresponding units per hr.

Units Interpretation Value

G mg
dL Blood glucose. State variable

I mg
dL (see text) Blood Insulin. State variable

L mg
dL (see text) Blood Glucagon. State variable

D mg
dL Glucose in digestive system. State variable

V mg
dL Glucose in the drinkable solution, State variable

to be transferred to the digestive system.

θ0 hr−1 Insulin tissue sensitivity. Unknown par.

θ1 hr−1 Glucagon liver sensitivity. Unknown par.

θ2 hr Glucose digestive system mean life. Unknown par.

a, b hr Insulin and Glucagon clearance mean life. 31 min.

c hr Time that the subject took to drink most of the 5 min max.
glucose solution (transfer time to D).

We develop a minimal model for blood glucose-insulin interaction based
on a two compartment model. A a simple transfer compartment of glucose
into the diagestive system and a more complex compartment for blood glu-
cose and interactions with Insulin and other glucose substitution mechanisms.

Once OGTT data is available, we perform a formal statistical analysis
using Bayesian inference for the unknown parameters of each patient and
predict their glucose level at 3h after the test.
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2 The model

Our Diabetes minimal dynamic model is

dG

dt
= L− I +

D

θ2
(1)

dI

dt
= θ0 (G−Gb)

+ − I

a
(2)

dL

dt
= θ1 (Gb −G)+ − L

b
(3)

dD

dt
= −D

θ2
+

2V

c
(4)

dV

dt
= −2V

c
. (5)

All state variables and parameters are positive. Definitions of the state
variables, parameters and their units are described in Table 1.

The heuristics behind this model are as follows and are similar to other
minimal models following the same heuristics (for example, see Palumbo
et al., 2013).

When glucose goes above the normal threshold (Gb), Insulin is produced,
ie. its derivative increases, see (2). This, in turn, acts on blood glucose
and decreases its concentration, given the −I term in (1), and decreases the
derivative of G. The opposite effect is achieved with the Glucagon derivative
in (3), increasing blood Glucose levels, with the term L in (1), once Glucose
is below the threshold Gb.

D(t) represents the glucose in the digestive system that will be transferred
to the blood stream. After the oral sugar intake, glucose in this compartment
decreases, increasing the blood glucose G(t); see (1) and (4).

D(t) is measured in the same units as G (mg/dL) and θ2 (the rate of glu-
cose transfer form D to G) is measured in hr that is the glucose compartment
transfer mean life. This Glucose transfer mean life has been estimated at 71
min Anderwald et al. (2011), however it may vary greatly, perhaps from 15
to 60 min, depending on the subject’s digestive system, bowel characteristics,
gender, etc.

Moreover, there is the process of drinking the glucose solution, which
may take up to 5min, but an individual may drink the contents in far less
time. This is modeled by the additional compartment V , where c is the time
where most of the glucose (87%) solution has been drunk. Ideally the health
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practictioner would record the total time the patient took to drink the glucose
solution. Unfortunately this information is not available and therefore we fix
c = 5/60hr.

The Insulin and Glucagon clearance rates are not estimated. It is known
that the total Insulin clearance time is approximately 71 min (Duckworth
et al., 1998); we therefore set the Insulin half life to 36min, that is a = 0.6hr.
There is less knowledge regarding clearance rates for Glucagon. We set it
equal to the clearance rate of Insulin, that is b = 0.6hr.

3 Uncertainty Quantification Using Bayesian

Inference

Once the OGTT data is observed we perform the Inverse Analysis by infer-
ring the patient’s corresponding model parameters using Bayesian statistics
(Fox et al., 2013). We have observations d0, d1, . . . , dn−1 for the measured
Glucose during the OGTT test at times t0, t1, . . . , tn−1. Plasma glucose is
measured with relative precision, however high frequency fluctuations exist
(given the pancreatic beta cells’ Insulin delivery mechanisms, idf.org (2015))
and, along with model error itself, we expect Glucose readings di to fluctuate
around a mean value, modeled here as G(ti). We impute an independent
Gaussian error for these readings, namely

di = G(ti) + ei where ei ∼ N(0, σ); i = 0, 1, . . . , n− 1.

To account for observation errors and, at least informally, model uncertainty
we use a σ = 5. From this a likelihood is constructed.

As mentioned in the previous section the only parameters being inferred
are θ0, θ1 and θ2. Moreover, the initial value G(0) is also a parameter to
be inferred. These are all positive and as a first choice we select Gamma
priors for the parameters θ0 and θ1. Since we would like to learn about these
two parameters for each patient, we use vague Gamma distributions with
shape=2 and rate=1

4
.

The rest of the initial values are set to I(0) = 0 and L(0) = 0 since the
patient is expected to be in homeostasis (equilibrium) and D(0) = 0 fasting.
V (0) = V0 is the initial Glucose intake, at the onset of the test.

On the other hand, we do have information regarding θ2, the glucose
transfer mean life. This transfer cannot be arbitrarily fast or slow, given the
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transit through the digestive tract and the fact that the drinkable Glucose
solution is basically directly taken into the blood requiring no digestive pro-
cess. The Glucose half life in the digestive tract has been estimated to be
between 40 and 90 min Anderwald et al. (2011).

We use a gamma distribution with mean at 1/2hr (shape= 10 and rate=
20) and truncated at the extreme (but bounded) values 0.16 < θ2 < 2.
That is, most sugar will be transferred (2θ2) to the blood stream within
in a minimum of 20 min and a maximum of 4hr. In fact, since (4) and
(5) may be regarded as a separate system of ODEs (forcing the system of
(1), (2) and (3) with the term D

θ2
), which in turn may be regarded as a

linear nonhomegeneous ODE, it may be solved analytically for D to obtain

D(t) = V0
c

2θ2
−1

(
e−

2t
c − e−

t
θ2

)
. Since D cannot be negative, at t = 0 it may

only increase, therefore D′(0) > 0. From this it is straightforward to see that
we most have θ2 > c/2. The support of θ2 most start above zero.

The basis of Bayesian analysis is the posterior distribution for all param-
eters. This results in

f(θ|D) ∝ exp

{
1

2σ2

n−1∑
i=0

(di −Gθ(ti))
2

}
2∏
j=0

θ
aj−1
i exp(−bjθj)ISj(θj),

where aj and bj are the Gamma hyper parameters for the prior of θj, S1 =
S2 = (0,∞) and S3 = [1/6, 2]. To obtain Monte Carlo samples from this
(unnormalized) posterior distribution, an MCMC is performed using the t-
walk (Christen and Fox, 2010). This is a self-adjusting MCMC algorithm
and the resulting sampler is efficient in most cases for this low dimensional
(3) problem. In the next Section we present some examples of how our model
and inference works on some real OGTT data.

4 Examples and Results

Figures 1, 3 and 5 show how real OGTT data is adjusted by our model. The
red dots are the measured data points, and the grey lines are elements of a
posterior sample of glucose curves.

Figure 1 is a healthy patient, figure 2 shows the marginal priors of θ0,
θ1 and θ2 corresponding to this patient, overlaid with a histogram of the
marginal posteriors. Figure 3 is a patient with strange oscillating blood glu-
cose measurements (previous diagnosis technique would classify this patient
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Figure 1: A nice decaying OGTT, belonging to a healthy patient

as “normal”), and figure 4 shows the corresponding priors and posteriors.
Figure 5 is a considered and Impaired Glucose Tolerant patient (IGT, cur-
rently considered an pre diabetic condition) and figure 6 shows the corre-
sponding posteriors for this patient.

As can be seen in all three cases, the model has strong descriptive power
for the times contained in the measurement interval. It also has reasonable
predictive power for times beyond the interval before the patient returns to
a fasting glucose level. After that the predictive power tapers off because the
uncertainty in θ1 is typically very high – usually matching the uncertainty in
the prior for this parameter, except in the case of the oscillating data.

5 Conclusions

In general, the main indicator of the status of a patient is θ0. For normal
patients, θ0 is around 2. Significantly lower values indicate that a patient
may have diabetes and higher values may indicate that a patient has some
other complication. The data is almost always very informative for θ0. More
over, the bayesian inference allows for prediction, and we are able to predict
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(a) (b) (c)

Figure 2: Priors and posteriors for the normal patient (used to generate figure
1). In green are the priors of θ0(a), θ1(b), and θ2(c). In blue are histograms
of the corresponding posterior samples.

Figure 3: Data with an oscillating fit. Older diagnostic techniques would
have called this patient “normal”.
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(a) (b) (c)

Figure 4: Priors and posteriors for the patient with oscillating data (used to
generate figure 3). In green are the priors of θ0(a), θ1(b), and θ2(c). In blue
are histograms of the corresponding posterior samples.

Figure 5: A diabetic patient with normal fasting OGTT and an Insulin
resistance profile.
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(a) (b) (c)

Figure 6: Priors and posteriors for the insulin resistant patient (used to
generate figure 5). In green are the priors of θ0(a), θ1(b), and θ2(c). In blue
are histograms of the corresponding posterior samples.

Glucose levels beyond the length of the test (shown in figure 1, 3 and 5 up
to 3 h). In particular, for figure 5 the prediction is that the patient will still
have a high glucose level (above 120 mg

dL
) and yet current diagnosis standards

classify her/him as IGT (a pre diabetic condition).
θ1, on the other hand, depends on measurements found below fasting

glucose levels. For healthy patients and also for diabetics, it is uncommon
for such data to become available for the duration of the test.

θ2 is an important element of inference, and often data provide informa-
tion for it however, as yet, there is no clear relationship between the value of
θ2 and a patient diagnosis.

We intend to provide a tool for proper diagnosis using OGTT. For this
very important public health issue, there is a need for a more sophisticated
tool than the direct recording of values read during the test.

Covariates (weight, age, etc.) will be used to help in the analysis, creating
a hierarchical model embedded into the ODE model, in more population
based studies, using ideally a large sample of patients with a range of health
conditions to tune the model parameter value ranges to establish a more
comprehensive diagnosis tool than what is currently available.

A more extensive validation of the model, and model parameters, is
needed in order to have an effective diagnosis tool. This will necessarily
involve the OGTT tests, and their further analysis using our model, in a
wide range of healthy individuals and individuals with a various prediabetic
and diabetic conditions to establish a more comprehensive diagnosis tool
than what is currently available.
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We are in the course of such research and our results will be published
elsewhere.
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